APR. 1993

ISOLATION AND STRUCTURE DETERMINATION OF NOVEL PHOSPHATIDYLINOSITOL TURNOVER INHIBITORS, PIERICIDIN B5 AND B5 *N*-OXIDE, FROM *Streptomyces* sp.

Hiroshi Nishioka, Tsutomu Sawa, Yoshikazu Takahashi, Hiroshi Naganawa, Masa Hamada and Tomio Takeuchi

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

KAZUO UMEZAWA

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan

(Received for publication November 9, 1992)

In the course of a screening program for inhibitors of epidermal growth factor (EGF)-induced phosphatidylinositol turnover in human epidermoid carcinoma cell line A431, we discovered two novel compounds of the piericidin family from the culture broth and mycelia of a *Streptomyces* strain MJ288-OF3. We named them piericidin B_5 and B_5 *N*-oxide. By NMR and mass spectrometric analyses, the molecular formulas of piericidin B_5 and B_5 *N*-oxide were determined to be $C_{27}H_{41}NO_4$ (MW 443) and $C_{27}H_{41}NO_5$ (MW 459), respectively. Piericidin B_5 and B_5 *N*-oxide inhibited phosphatidylinositol turnover of A431 cells with IC₅₀s of 10.0 µg/ml and 1.1 µg/ml, respectively.

Phosphatidylinositol turnover is considered to be correlated with transformation by some types of oncogenes^{1,2)} and cellular response to growth factors such as EGF³⁾ and platelet-derived growth factor⁴⁾. Enzymatic breakdown of phosphatidylinositol 4,5-bisphosphate by phospholipase C generates inositol 1,4,5-triphosphate and 1,2-diacylglycerol. These products both act as intracellular second messengers⁵⁾, the former mobilizing Ca²⁺ from intracellular stores and the latter stimulating protein kinase C activity. We have screened inhibitors of phosphatidylinositol turnover from microbial secondary metabolites, and previously isolated psi-tectorigenin⁶⁾, inostamycin⁷⁾ and piericidin B₁ *N*-oxide⁸⁾. Piericidins are insecticidal substances found from *Streptomyces mobaraensis*^{9,10)} and *Streptomyces pactum*¹¹⁾. They are systematically named piericidins A_n, B_n, C_n and D_n (n=1, 2, 3, 4)¹²⁾. We have isolated novel and potent inhibitors of phosphatidylinositol turnover strain and named them piericidin B₅ and B₅ *N*-oxide because of their structural relationship to the piericidin B group.

Materials and Methods

Materials

The A431 cell line was a gift from Prof. S. KAWAI, Institute of Medical Science, University of Tokyo. Piericidin B_1 was kindly supplied by Dr. S. YOSHIDA, the Institute of Physical and Chemical Research, Wako. *Myo*-[³H]inositol was purchased from DuPont-New England Nuclear.

In Situ Phosphatidylinositol Turnover Assay

The phosphatidylinositol turnover assay was carried out as described previously^{6.7)}. In brief, A431

VOL. 46 NO. 4

565

cells (3×10^5 cells/well) plated on 22-mm plastic wells were grown in DULBECO's modified EAGLE's medium supplemented with 5% calf serum for 16~18 hours. The cells were pre-incubated in 1 ml of HEPESbuffered saline (HBS) containing *myo*-[³H]inositol (1 μ Ci/ml) at 37°C for 30 minutes. Then, the inhibitor and EGF (400 ng/ml) were added and the incubation was continued at 37°C for 60 minutes. The cells were washed with 1.0 ml of 10% TCA containing 0.01 M sodium pyrophosphate and the acid-insoluble fraction was solubilized using 1.0 ml of 0.25 N NaOH. The radioactivity of labeled phosphoinositides was measured by liquid scintillation counting.

Fermentation

The Streptomyces strain MJ288-OF3 was inoculated into 110 ml of seed medium consisting with 4.0% sucrose, 2.5% soybean meal, 0.25% NaCl, 0.32% CaCO₃, 0.0005% CuSO₄ \cdot 5H₂O, 0.0005% MnCl₂ \cdot 4H₂O and 0.0005% ZnSO₄ \cdot 5H₂O (adjusted to pH 7.4 before sterilization). The seed culture was incubated for 3 days at 28°C on a rotary shaker (180 rpm). Two ml of the culture was then transferred to 110 ml of fermentation medium whose composition was equivalent to that of the seed medium. The fermentation was carried out for 4 days at 28°C on a rotary shaker (180 rpm).

Isolation

The fermentation broth (12 liters) was filtered, and the mycelia were extracted with acetone (1 liter). After removal of the acetone, the extract was combined with the filtrate (10.8 liters). The mixture was extracted with EtOAc (14 liters) and the EtOAc layer was dried over anhydrous Na_2SO_4 . The EtOAc extract was then concentrated *in vacuo* to give an oily matter (4.65 g), which was subjected to a silica gel column chromatography (200 ml; column I).

Piericidin B_5 was isolated as follows. The fractions containing piericidin B_5 , eluted with CHCl₃ from the column I, were concentrated *in vacuo* to yield 716.0 mg of oily material. The oily material was further applied to a silica gel column (30 ml). The column was successively washed with toluene, toluene - EtOAc (50:1) and toluene - EtOAc (30:1), and piericidin B_5 was eluted with toluene - EtOAc (10:1). After evaporation to dryness, the residue (340.5 mg) was chromatographed on Sephadex LH-20 (150 ml) with EtOAc. The combined active fraction (228.6 mg) was partitioned in a solvent system *n*-hexane - CH₃CN (1:1) by centrifugal partition chromatography (CPC, Sanki Engineering Co. Ltd.), in which the lower portion was stationary. The fractions containing piericidin B_5 were collected and further purified with *n*-hexane - CH₃CN - 28%NH₄OH (125:125:1) in CPC. Thus, 6.3 mg of piericidin B_5 was obtained.

Piericidin B_5 N-oxide was isolated as follows. The fractions containing piericidin B_5 N-oxide eluted with CHCl₃-MeOH (10:1) from column I were concentrated *in vacuo* to give 976.4 mg of oily material. It was rechromatographed on a silica gel column (40 ml) and eluted with CHCl₃-MeOH (30:1). After evaporation to dryness, the residue (523.0 mg) was partitioned in the solvent system CHCl₃-MeOH - H₂O (5:6:4) in CPC. The combined active fraction (496.8 mg) was further purified by preparative HPLC using a reverse phase silica gel column (Nucleosil ${}_{5}C_{18}$ 30 × 250 mm) with a solvent system of 85% MeOH. The eluate was concentrated to yield 39.9 mg of purified piericidin B₅ N-oxide.

Physico-chemical Properties

Piericidin B₅ and B₅ *N*-oxide are pale yellow oils, soluble in common organic solvents such as CHCl₃, EtOAc and MeOH, but insoluble in water. Piericidin B₅ ($C_{27}H_{41}NO_{4}$): $[\alpha]_{D}^{24} - 12.5^{\circ}$ (*c* 0.2, MeOH); FAB-MS *m/z* 444 (M + H)⁺; UV λ_{max}^{MeOH} nm (ε) 232 (31,270), 237 (31,890), 267 (5,010), $\lambda_{max}^{0.1 \text{ N} \text{ HCI-MeOH}}$ nm (ε) 210 (34,960), 237 (30,970), 273 (9,380), $\lambda_{max}^{0.1 \text{ N} \text{ NaOH-MeOH}}$ nm (ε) 238 (37,200); IR v_{max} (CHCl₃) cm⁻¹ 3530, 2980, 2950, 2890, 2840 sh, 1630, 1600, 1480, 1450, 1430, 1400, 1390, 1370, 1340, 1260, 1230 sh, 1200, 1140, 1110, 1090, 1060, 1010, 980, 960, 910, 890, 870. Piericidin B₅ *N*-oxide ($C_{27}H_{41}NO_{5}$): $[\alpha]_{D}^{24} - 8.0^{\circ}$ (*c* 0.2, MeOH); FAB-MS *m/z* 460 (M+H)⁺; UV λ_{max}^{MeOH} nm (ε) 227 (39,760), 238 sh (34,250), 246 sh (23,850), 267 (8,930), $\lambda_{max}^{0.1 \text{ N} \text{ NcH-MeOH}}$ nm (ε) 214 (36,150), 238 (30,310), 246 sh (23,850), 275 (6,060), $\lambda_{max}^{0.1 \text{ N} \text{ NcH-MeOH}}$ nm (ε) 230 sh (44,280), 238 sh (39,480), 246 sh (25,840), 276 (12,870); IR v_{max} (CHCl₃) cm⁻¹ 3530, 2980, 2950, 2890, 2840 sh, 1610, 1510, 1470, 1430, 1390, 1350, 1310, 1240, 1190, 1160, 1140, 1120, 1100, 1090, 1070, 1020, 970, 950, 920, 890, 870.

Reduction of Piericidin B_5 N-Oxide to Piericidin B_5

A mixture of piericidin B₅ N-oxide (17.1 mg) and zinc powder (174.8 mg) in CH₃COOH (1.5 ml) was stirred at 40°C for 2 hours. The reaction mixture was diluted with distilled water (50 ml) and extracted with EtOAc ($25 \text{ ml} \times 2 \text{ times}$). The organic layer was successively washed with saturated NaHCO₃ (50 ml) and water $(25 \text{ ml} \times 2 \text{ times})$, and dried over anhydrous Na₂SO₄. The organic extract was concentrated in vacuo and subjected to the CPC system with a solvent system of n-hexane-CH₃CN (1:1). After concentration to dryness, 9.9 mg of the reduced material was obtained. The reduced substance was identical to piericidin B₅ by FAB-MS and ¹H NMR analyses.

Results and Discussion

We have found two novel phosphatidylinositol turnover inhibitors, piericidin B_5 and B_5 N-oxide, produced by a Streptomyces strain MJ288-OF3. Morphological and physiological studies indicated that the strain is similar to Streptomyces aburaviensis. The producing strain also gave piericidin B_1 and B_1 N-oxide previously. The FAB-MS, ¹H and ¹³C NMR spectral analyses revealed that the molecular formulas of piericidin B₅ and B₅ N-oxide were $C_{27}H_{41}NO_4$ [m/z 444 (M+H)⁺] and $C_{27}H_{41}NO_5$ [m/z 460 $(M+H)^+$], respectively. The ¹H and ¹³C NMR spectra of piericidin B₅ and B₅ N-oxide are shown in Tables 1 and 2.

The UV spectrum of piericidin B_5 very closely resembled that of piericidin B_1^{10} , indicating that they have the same chromophore. By comparison of FAB-MS, ¹H and ¹³C NMR spectra between piericidin

Position

 B_5 and $B_1^{(10)}$, it was inferred that the side chain piericidin B₅ possessed one more methylene group $(-CH_2-)$ than piericidin B_1 . The side chain structure of piericidin

Table 1. ¹H^aN

in CDCl₃.

Posi-

tion

1

2

4

5

6

8

9

10

12

13

14

15

16

17

18

19

6'

7'

8'

Table 2. ¹³C^a NMR data of piericidin B₅ and B₅ N-oxide in CDCl₃.

 B_5

B, N-oxide

27.1 t

118.7 d

136.9 s

43.2 t

124.7 d

136.6 d

133.3 s

135.2 d

35.3 d

92.6 d

132.2 s

132.2 d

20.8 t

14.1 g

16.4 q

12.9 q

17.6 q

10.5 q

56.1 q

145.6 s

117.6 s

158.7 s

135.2 s

151.8 s

11.3 q

60.9 q 60.9 q

finiamiaidim Di una da	. due a a d'har h a se a a a a a l a a a		
\mathbf{D}_5 was de	duced by neteronuclear	1	34.4 t
		2	121.8 d
1. ¹ H ^a NMR data of piericidin B_5 and B_5 <i>N</i> -oxide		3	135.2 s
CDCl ₃ .		4	43.1 t
		5	125.1 d
B ₅	B_5 N-oxide	6	136.4 d
		7	133.3 s
$3.37 \text{ d} (J_{1,2} = 7.2 \text{ Hz})$	$3.67 \text{ d} (J_{1,2} = 6.8 \text{ Hz})$	8	135.0 d
5.39 t	5.19 t	9	35.4 d
2.77 d $(J_{4,5} = 6.8 \text{ Hz})$	2.73 d $(J_{4,5} = 6.8 \mathrm{Hz})$	10	92.7 d
5.51 m $(J_{5,6} = 15.6 \text{ Hz})$	5.46 m $(J_{5,6} = 15.6 \text{ Hz})$	11	132.3 s
6.08 d	6.06 d	12	132.2 d
5.29 d $(J_{8,9} = 8.8 \mathrm{Hz})$	5.29 d $(J_{8,9} = 8.8 \mathrm{Hz})$	13	20.9 t
$2.65 \text{ m} (J_{9,10} = 8.4 \text{ Hz})$	2.64 m $(J_{9,10} = 8.6 \text{ Hz})$	14	14.1 g
3.16 d	3.15 d	15	16.6 q
5.34 t $(J_{12,13} = 7.2 \mathrm{Hz})$	5.34 t $(J_{12,13} = 7.2 \text{ Hz})$	16	12.9 q
2.06 m $(J_{13,14} = 7.8 \text{ Hz})$	2.07 m $(J_{13,14} = 7.8 \text{ Hz})$	17	17.7 g
0.98 t	0.97 t	18	10.4 q
1.74 s	1.75 s	19	56.1 g
1.74 s	1.71 s	1′	150.9 s
$0.78 \text{ d} (J_{9,17} = 6.4 \text{ Hz})$	$0.78 \text{ d} (J_{9,17} = 6.4 \text{ Hz})$	2'	112.0 s
1.52 s	1.52 s	3′	154.0 s
3.13 s	3.12 s	4'	127.8 s
2.09 s	2.16 s	5'	153.5 s
3.86 s	3.69 s	6′	10.5 g
3.96 s	3.96 s	7′	60.6 q
H chemical shifts (nom) gignol multiplicities and	8′	53.1 q

a ¹H chemical shifts (ppm), signal multiplicities and coupling constants (J in Hz) in parentheses at 400 MHz.

¹³C chemical shift (ppm) and signal multiplicities at 100 MHz.

Piericidin B₅

Piericidin B₅ N-oxide

multiple bond correlation (HMBC) via long range coupling spectra. Thus, we determined that the terminal methyl group of piericidin B1 was changed to an ethyl group in B_5 . The structure of piericidin B₅ N-oxide was also determined in comparison with piericidin B₁ N-oxide⁸⁾ by UV, FAB-MS, ¹H and ¹³C NMR analyses. Further, we chemically reduced piericidin B₅ N-oxide to piericidin B₅ and confirmed that the reduced substance was identical to piericidin B₅ by FAB-MS and ¹H NMR analyses. Absolute configurations of C-9 and C-10 in both piericidin B5 and B5 N-oxide were determined to be S-S since the optical rotations of piericidin B_5 (-12.5°) and B_5 N-oxide (-8.0°) are similar to those of piericidin $B_1 (-6.5^{\circ})^{10}$ and B_1 N-oxide $(-4.5^{\circ})^{8}$, respectively. Thus, we have concluded that the structures of piericidin B₅ and B₅ N-oxide are as shown in Fig. 1.

Piericidin B_5 and B_5 *N*-oxide inhibited EGFstimulated [³H]inositol incorporation into phospholipids with IC₅₀s of 10.0 µg/ml and 1.1 µg/ml, respectively, in the A431 cells assay system. As

Table 3. Antimicrobial activities of piericidin B_5 and B_5 *N*-oxide in agar dilution assay.

Test organisms	MIC (µg/ml)	
rest organisms	B ₅	B ₅ N-oxide
Staphylococcus aureus Smith	>100	25
Micrococcus luteus FDA16	>100	0.8
Bacillus anthracis	>100	12.5
Corynebacterium bovis 1810	>100	6.3
Escherichia coli NIHJ	>100	12.5
Shigella dysenteriae JS11910	>100	6.3
Salmonella typhi T-63	>100	>100
Proteus vulgaris OX19	>100	>100
Serratia marcescens	>100	>100
Pseudomonas aeruginosa A3	>100	100
Klebsiella pneumoniae PCT602	>100	>100
Mycobacterium smegmatis	> 100	>100
ATCC 607		
Candida albicans 3147	> 100	>100
Saccharomyces cerevisiae F-7	>100	>100
Cryptococcus neoformans F-10	>100	50
Cochliobolus miyabeanus	>100	25
Pyricularia oryzae	>100	50
Pellicularia sasakii	>100	1.6
Xanthomonas citri	>100	3.1
Trichophyton asteroides 429	>100	6.3
Aspergillus niger F-16	>100	>100

shown in Table 3, piericidin B_5 *N*-oxide showed antimicrobial activity against Gram-positive and part of Gram-negative bacteria and fungi, although piericidin B_5 did not. In the case of piericidin B_1 , again only the *N*-oxide shows antimicrobial activity⁸.

Acknowledgment

The authors wish to thank Dr. S. YOSHIDA, Institute of Physical and Chemical Research, Wako, for the generous gift of piericidin B_1 .

References

- FLEISCHMAN, L. F.; S. B. CHAHWALA & L. CANTLEY: Ras-transformed cells: altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites. Science 231: 407~410, 1986
- JACKOWSKI, S.; C. W. RETTENMER, C. J. SHERR & C. O. ROCK: A guanine nucleotide-dependent phosphatidylinositol 4,5-diphosphate phospholipase C in cells transformed by the v-fms and v-fes oncogenes. J. Biol. Chem. 261: 4978~4985, 1986
- SAWYER, S. T. & S. COHEN: Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells. Biochemistry 20: 6280~6286, 1981
- 4) HABENICHT, A. J. R.; J. A. GLOMSET, W. C. KING, C. NIST, C. D. MITCHELL & R. Ross: Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J. Biol. Chem. 256: 12329~12335, 1981
- BERRIDGE, M. J. & R. F. IRVINE: Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315~321, 1984
- 6) IMOTO, M.; T. YAMASHITA, T. SAWA, S. KURASAWA, H. NAGANAWA, T. TAKEUCHI, Z. BAO-QUAN & K. UMEZAWA: Inhibition of cellular phosphatidylinositol turnover by psi-tectorigenin. FEBS Lett. 230: 43~46, 1988
- 7) IMOTO, M.; K. UMEZAWA, Y. TAKAHASHI, H. NAGANAWA, Y. IITAKA, H. NAKAMURA, Y. KOIZUMI, Y. SASAKI, M. HAMADA, T. SAWA & T. TAKEUCHI: Isolation and structure determination of inostamycin, a novel inhibitor of phosphatidylinositol turnover. J. Nat. Prod. 53: 825~829, 1990
- NISHIOKA, H.; T. SAWA, K. ISSHIKI, Y. TAKAHASHI, H. NAGANAWA, N. MATSUDA, S. HATTORI, M. HAMADA, T. TAKEUCHI & K. UMEZAWA: Isolation and structure determination of a novel phosphatidylinositol turnover inhibitor, piericidin B₁ N-oxide. J. Antibiotics 44: 1283~1285, 1991
- 9) TAMURA, S.; N. TAKAHASHI, S. MIYAMOTO, R. MORI, S. SUZUKI & J. NAGATSU: Isolation and physiological activities of piericidin A, a natural insecticide produced by *Streptomyces*. Agric. Biol. Chem. 27: 576~582, 1963
- 10) TAKAHASHI, N.; A. SUZUKI, Y. KIMURA, S. MIYAMOTO, S. TAMURA, T. MITSUI & J. FUKAMI: Isolation, structure and physiological activities of piericidin B, natural insecticide produced by a *Streptomyces*. Agric. Biol. Chem. 32: 1115~1122, 1968
- YOSHIDA, S.; K. YONEYAMA, S. SHIRAISHI, A. WATANABE & N. TAKAHASHI: Isolation and physical properties of new piericidins produced by *Streptomyces pactum*. Agric. Biol. Chem. 41: 849~853, 1977
- YOSHIDA, S. & N. TAKAHASHI: Piericidins: naturally occurring inhibitors against mitochondrial respiration. Heterocycles 10: 425~467, 1978